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We present a theory of ferroelectric liquid crystal switching which combines elements of
standard macroscopic continuum theories with mesoscopic Landau–de Gennes chevron
theories. The macroscopic elements of the theory apply in the chevron arms, and are subject
to a boundary condition at the chevron interface. This boundary condition can be derived
from an anchoring energy associated with the director discontinuity at the chevron tip. The
anchoring energy, which corresponds to the degree to which the cone mismatch condition is
not satisfied, is calculated using the mesoscopic Landau–de Gennes theory. In the combined
theory the frequently used cone-matching condition emerges as a thick cell limit. We are able
to calculate a free energy associated with the imposition of a field on particular
configurations. There follows a switching phase diagram determining the conditions for
thresholdless and bistable switching. We further show that the time dependence of the
switching process is determined by the slower bulk relaxation dynamics rather than by the
fast chevron surface dynamics.

1. Introduction

The intrinsic chiral nature of the smectic C* phase

has the physical consequence that it induces a

spontaneous polarization, on symmetry grounds, as

suggested by Meyer et al. [1] and thus the smectic

C* is naturally ferroelectric. The first application

of ferroelectric liquid crystals to display devices

was due to Clark and Lagerwall [2]. Devices involv-

ing a ferroelectric liquid crystal were observed to

possess the following properties: (a) fast switching

times due to linear coupling between the spontaneous

polarization and the applied electric field; (b) the

interaction with the cell surface can act to unwind

the natural ferroelectric helix; (c) the formation of

domains of differing polarizations separated by

domain walls; and (d) a threshold voltage necessary

for switching to occur. This strong influence of the

surface in these devices has given rise to their common

name: surface stabilized ferroelectric liquid crystals

(SSFLCs).

The first attempt to model SSFLC devices using a

continuum Frank–Oseen-type formulation was by

Handschy and Clark [3]. Their simple model was

sufficient to explain the observed helical unwinding, the

development of polarization domains and to provide

some switching dynamics. They assumed that the

ferroelectric arranged itself into a planar arrange-

ment of smectic layers, referred to as the bookshelf

geometry (see figure 1 (a)). However, Rieker et al. [4]

experimentally found this structure to be more

frequently replaced by the more complex chevron

structure, as shown in figure 2 (a). This structure

possesses large regions of uniformly tilted layers

(chevron arms), together with very narrow regions of

rapidly changing orientation in the middle of the

cell (the chevron tip) as well as close to the cell

boundaries. However, the existence of chevrons

provides technical advantages following from the

possibility of bistable switching, as well as interesting

physical modelling opportunities.

*Author for correspondence; e-mail: t.j.sluckin@soton.ac.uk
Figure 1. Bookshelf (side view) and up/down director con-

figurations of switched states (end view).
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The development of models to describe ferroelectric

switching has proven difficult. This is largely due to the

contrasting length scales associated with the chevron

arms and tip. In the arms, the molecular alignment

changes slowly, making macroscopic continuum the-

ories, such as the smectic C elastic continuum theory

developed by Leslie et al. [5], the ideal tool for

investigating the switching process. However, these

theories fail to incorporate the physics necessary to

describe molecular changes that occur on the chevron

interface length scale. At these lengths phenomeno-

logical Landau–de Gennes-type theories are more

appropriate, but become computationally expensive

when applied to the SSFLC device dimensions.

Vaupotič et al. [6] have demonstrated that studies on

relatively thin cells are possible using this approach. An

alternative approach has been to produce a hybrid

model. This uses a macroscopic model in the chevron

arms (regions of uniform tilt), but replaces the chevron

interface by an ad hoc torque condition (Maclennan

et al. [7, 8] and Ulrich and Elston [9]) or by a critical

torque threshold (Brown et al. [10]). Both of these

hybrid models lead to the explicit inclusion of a finite

field switching threshold.

In this paper we unify these two theoretical appro-

aches. We build on previous work [7–10] and provide a

calculational framework for investigating ferroelectric

switching, explicitly including the chevron interface

physics. We show that it is possible to obtain an

analytical expression for the chevron interface energy

provided we make some plausible physical assump-

tions. This interfacial energy condition will allow us to

formally derive the chevron interface matching, or cone

matching, condition. A natural corollary of this result is

that it is possible to construct a switching phase

diagram, defining parameter regimes for thresholdless

and bistable switching.
The paper is organized as follows. In § 2 some basic

ferroelectric physics and modelling will be introduced.

A description of our extended hybrid model will also be

described. Section 3 derives the chevron interface sur-

face tension. In § 4 we derive the cone matching

condition and present the switching phase diagram.

Section 5 describes the dynamical extension to this

model, where key features and some numerical results

are presented. Finally, § 6 discusses and concludes

the paper.

2. Basic modelling and notation

2.1. Smectic C* phase

Ferroelectric smectic C* liquid crystals tend to

organize themselves into layers in which the molecular

director n is tilted away from the layer normal a by

the so-called smectic cone angle hB, shown in figure 3.

The projection of the director onto the smectic planes is

often denoted as the c-director in continuum modelling.

The intrinsic chirality of these molecules leads to a

helical precession of the molecules in the direction of

the layer normal. This symmetry condition enables an

external field to induce a spontaneous polarization P.

This spontaneous polarization is oriented in the

direction b~a6c.

The coupling of the electric field with the polarization

leads to a reduction in the electrical energy density [11]:

fp~{P:E: ð1Þ
This field coupling is the main mechanism for low field

switching in ferroelectric cells. In the high field limit the

switching process is additionally influenced by non-

linear dielectric contributions.

2.2. Device physics and chevron geometry

Clark and Lagerwall [2] found that when FLCs

are placed within an LC cell the interaction of the

surface tends to unwind the natural helix, with the

bulk adopting an almost homogeneous alignment set

by the cell surface. Handschy and Clark developed a

switching model capable of predicting up and down

polarization domains depending on the direction of

E. They assumed the bookshelf geometry for their

calculations.

However, Rieker et al. [4] demonstrated that this

bookshelf structure is often replaced by the so-called

Figure 3. Vector coordinate system for smectic C* phase.
Figure 2. Chevron structure and layer thicknesses.
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chevron structure. The crucial idea behind the chevron

structure is that the layer tilt arises because of a

mismatch between the natural thermodynamically

stable smectic layer thickness in the bulk (dB) and the

layer thickness imposed by the layer pinning at the cell

surface (dS). Limat and Prost [12] have associated a

layer strain e~dS/dB21 as a measure of the layer

thickness mismatch. The strain imposed by the surface

can be minimized by rotating the layers through a tilt

angle dB~cos21 (dB/dS), as shown in figure 2. The layer

tilt permits the layers not to pay the energetic price of

dilatation.

However the countervailing consequence is that three

narrow regions of drastic reorientation are inserted.

Two of these regions are located close to the cell

surfaces, but one is in the centre of the cell. This region

is often known as the chevron interface. In the

transition regions there is a balance between compres-

sion and curvature energies. In addition the surface

regions include extra complications through complex

and still relatively unknown surface interactions.

Layer thinning is the driving mechanism of chevron

formation in both smectic A and smectic C liquid

crystal phases. There are, however, some differences in

the underlying physics of these two related phe-

nomena. In the smectic A phase the layers simply

undergo a small degree of layer thinning on cooling.

By contrast, in the smectic C phase the layer thinning

is primarily a result of molecular tilt occurring at

the smectic A to smectic C phase transition. This

thickness change defines the smectic C cone angle

through hB~cos21 (dC/dA), and is shown in figure 2 (b).

Theories describing the formation of chevrons in

the smectic A phase have been presented by Limat

and Prost [12], and in more detail, using a Landau–de

Gennes free energy formulation, by Kralj and

Sluckin [13]. More recently an analogous theory for

smectic C chevrons has been put forward by Vaupotič

et al. [14].

2.3. Chevron interface and the cone matching condition

In order to understand switching in ferroelectrics

it is necessary to understand the behaviour of the

director across the chevron interface. This is a some-

what complex problem, requiring a full solution of

the Landau–de Gennes smectic C theory [14]. However,

it is possible to make some progress because the

chevron interface thickness l is small in comparison

to the length over which electric distortions relax j.
Clark and Rieker [15] have suggested that, because l
is extremely sharp, the chevron interface may effec-

tively be regarded as a discontinuous surface boundary

when investigating the ferroelectric switching process

for macroscopic theories. If one enforces this discon-

tinuous boundary, it is possible to generate three

geometrical scenarios in terms of layer tilt angle dB and

smectic C cone angle hB:

(1) hBwdB. There is an overlap between the cones

at the interface, and thus it is possible to main-

tain continuity of the nematic director field.

This is known as the cone matching condition,

and is shown in figure 4. This leads geometri-

cally to two important angular quantities for

modelling purposes. The first is the rotational

angle at the discontinuity wc, defined relative to

the x-direction in the tilted layer reference

frame. The second is the angular component

ac in the y-direction at the discontinuity. We will

refer to this simply as the out-of-plane director

tilt. This is a requirement for bistable ferro-

electric switching. Using the coordinate system

shown in figure 4 it is straightforward to show

wc and ac are defined respectively by

wc~ cos{1 { tan dB
tan hB

� �

ac~ cos{1 cos hB
cos dB

� �
:

ð2Þ

Rieker et al. [4] observed experimentally the

following angular relation

d2B~h2B{a2c : ð3Þ
(2) hB~dB. This case is the limit of the first

scenario, for which the smectic cones only just

touch at the interface. There is no out-of-plane

director tilt and no possibility for bistable

switching.

(3) hBvdB. This case is forbidden geometrically as

there is no way to maintain director continuity

across the interface.

2.4. Macroscopic continuum modelling

The standard continuum modelling formulation,

derived by Leslie et al. [5], is written as

2fB~A12 b:+|cð Þ2zA21 c:+|bð Þ2

z2A11 b:+|cð Þ2 c:+|bð Þ2

zB1 +:bð Þ2zB2 +:cð Þ2

z
1

4
B3 b: +|bð Þzc: +|cð Þ½ �2

zB13 +:bð Þ b: +|bð Þzc: +|cð Þ½ �

z2C1 +:cð Þ b:+|cð Þz2C2 +:cð Þ c:+|bð Þ

ð4Þ

where Aij, Bi and Ci are the smectic C elastic constants
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as defined in [5]. Matching these elastic constants

with experimental results has proven extremely success-

ful [10].

However, in this formulation layer shrinkage (or

equivalently changes in smectic cone angle) has not

been taken into account. It is thus not possible to

describe the chevron structure. Other more complex

formulations that include layer compression have

been presented by Nakagawa [16], de Meyere and

Dahl [11] and Sabater et al. [17] but have been

used less frequently in the identification of ferro-

electric material parameters. It is, however, well suited

to describing director deformation in uniformly

tilted regions such as the chevron arms. In this case

the free energy can be written, together with the

contribution due to the ferroelectric polarization,

equation (1), as

F~

ðL

0

fbzfpzfd
� �

dx ð5 aÞ

fb~ B1 +:bð Þ2zB2 +:cð Þ2
n

z
1

4
B3 b: +|bð Þzc: +|cð Þ½ �2,

zB13 +:bð Þ b: +|bð Þzc: +|cð Þ½ �
o

ð5 bÞ

fp~{P:E: ð5 cÞ

2.5. Mesoscopic Landau–de Gennes modelling

In a Landau-de Gennes formulation the free energy

is based upon an expansion of phenomenological terms

using the relevant smectic C phase order parameters.

Figure 4. Cone matching and director profiles. The top picture shows the smectic C cone in a space-fixed set of axes, and shows
the possible equilibrium directors consistent with a given layer orientation. The picture marked ‘Side’ gives a side view of how
this cone changes across the cell, as the layer direction changes more or less discontinuously at the chevron interface. That
marked ‘End’ shows the same phenomenon, now viewed by an observer looking down the cell and able to see azimuthal
changes. The picture marked ‘Above’ shows the out-of-plane director tilt ac at the chevron interface.
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The free energy is determined in terms of the regular

director field n(r) but with the addition of a com-

plex smectic order parameter Y(r). This additional

order parameter includes the degree of layer order

g and the position of the layers through a phase

function W:

Y rð Þ~g rð Þ exp iW rð Þ½ �: ð6Þ

In the case of chevrons the phase function describes a

distortion u(r) away from a homogeneous bookshelf

configuration. The phase function W is thus written

W rð Þ~q z{u rð Þ½ � ð7Þ
where q~2p/d is an imposed surface layer periodicity.

This can also be thought of as a far field bulk layer

spacing condition that can be used to determine

the layer tilt angle dB~cos21 (q/qB). The director is

defined using the coordinate system shown in figure 4

to be

n~ sin h cos w cos dz sin d cos h, sin h sin w,ð

cos h cos d{ sin d sin h cos wÞ:
ð8Þ

The construction of a free energy to describe

distortions of the director and complex smectic order

parameter is not trivial, as any formulation must

respect the smectic C symmetries. In this paper we

shall use a smectic C phenomenological theory, similar

to that used by Vaupotič et al. [14] in the study of

smectic C chevrons. The free energy is written as

F~

ð
V

fNzfAzfC½ �d3r ð9 aÞ

fN~
1

2
K1 +:nð Þ2z 1

2
K2 n:+|nð Þ2z 1

2
K3 n|+|nð Þ2 ð9 bÞ

fA~
1

2
cE n:+{iqAð Þyj j2z 1

2
c\ n|+ð Þyj j2 ð9 cÞ

fC~
1

2
D\ +2

\y
�� ��2: ð9 dÞ

Here fN is the usual Frank nematic energy des-

cribing splay, twist and bend deformation. fA is the

smectic A contribution composed of a dilatational

energy term (cI) and smectic A stabilizing term (c\).

For c\w0 the molecules are constrained energetically

to lie along the layer normal, i.e. smectic A phase. By

contrast, on cooling into the smectic C phase the

molecules are allowed to tilt away from the layer

normal, achieved by setting c\v0. In order to

prevent the molecules tilting too far, a smectic C

stabilizing term fC is required. This term allows the

existence of finite cone angle and maintains layer

continuity [18].{
This type of theory provides an ideal framework for

investigating transition regions such as the chevron tip

and cell surfaces. However, the continuum theory is

more appropriate in slowly changing regions such as

the chevron arms.

2.6. Hybrid switching model

We now introduce a hybrid model of ferroelectric

switching that combines the simplicity of the macro-

scopic switching model with a mesoscopic model of the

chevron tip. The hybrid model essentially involves three

components:

(1) In the chevron arms we use the macroscopic

smectic C continuum model given by equa-

tion (5 a). The geometry of the chevron arms

enables the free energy to be expressed in terms

of a single rotation variable w. This rotational

value matches up to a chevron surface boundary

condition w~wS, determined by the mesoscopic

calculation.

(2) In the transition region or chevron interface, the

mesoscopic Landau–de Gennes formulation is

used to calculate a surface tension or surface

energy as a function of wS. This calculation is

presented in § 3.

(3) We construct dynamic switching equations that

incorporate both the bulk and chevron surface

switching. The dynamics of the bulk are governed

by the field which induces spontaneous polariza-

tion, macroscopic elastic distortion, bulk viscosity

and the chevron surface condition, w~wS. Neglect-

ing backflow we write the dynamics in terms of a

time-dependent Ginzburg–Landau equation for

the both the bulk, w(x, t), and the surface wS(t). The
relaxation times are governed by the material

viscosities of the bulk and the surface. The

calculations for the static solutions are presented

in § 4, and those for the dynamical solutions in § 5.

In order to simplify the complexity of the calculation,

the following assumptions have been made:

(a) Only a symmetric chevron that is homogeneous

in the y- and z-directions will be considered, and

so n~n(x) and W~q[z2u(x)]. The symmetry

enables a reduction in the calculation to half

{This term is different from the original Vaupotič et al. [14]
(D|(n6+)2W|2) formulation and has been proposed by Chen
and Lubensky, where +2

\~ dij{ninj

� �
+i+j . In the level of

approximation to be used here it would have made little
difference to the results using either formulation, and would
have only served to complicate the calculations.
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of a cell, greatly simplifying the mesoscopic

chevron surface calculation.
(b) The ferroelectric coupling of polarization is only

included in the chevron arms, where the

macroscopic continuum theory is easily applied.

In principle, this coupling should also be

included in the chevron surface term. In

practice, this chevron region is small and is

expected to make only a small contribution to

the director torque due to the tip.

(c) The electric field is assumed to be uniform

through the cell (E(r)~[E, 0, 0]). While it is clear

that it is the D-field that is conserved within

ferroelectric cells it requires a self-consistent

calculation of the director configuration and the

field. In principle, a fully self-consistent calcula-

tion is possible (see, for example, Brown et al.

[10] and de Meyere and Dahl [11]). However, in

practice, the effect is not expected to alter the

generic structure of the switching phase diagram

and will therefore not be included here.

(d) We use the nematic one-elastic constant

approximation within the mesoscopic calcula-

tion, K~Ki for i~1, 2, 3.

3. Chevron interfacial energy

In this section we calculate a surface energy w(ws)

using the Landau–de Gennes smectic C theory

discussed in § 2. This methodology is similar to that

used in the calculation of smectic A chevron interface

boundaries. However, in that case Limat and Prost [12]

have shown that the underlying phenomenological

terms can be integrated to provide a surface energy

as a function of equilibrium tilt angle dE of the

boundary. The new feature in the present model is that

d will be replaced by the rotational angle ws, which is

prescribed as the far field boundary condition.

In order to derive the surface energy condition it will

be necessary to separate the derivation into three parts,

and described in the following subsections. In the first

part we will use the dominance of the dilatational

thermodynamical force to enable us to re-write the

original formulation in a more physically intuitive way.

This will lead to the easy identification of equilibrium

quantities such as the smectic C cone angle and the out-

of-plane director tilt. In the second part, we enforce the

smectic C dilatational energy to be minimized every-

where. This allows an explicit calculation of the

equilibrium static layer profile. In the third part we

finally calculate the free energy of the interface by

quasi-statically changing wS, using the equilibrium layer

profile derived earlier in the second part.

3.1. Preliminaries and equilibrium properties

In the far field, away from the chevron tip, the layers

show uniform tilt. This will be the same as uncon-

strained equilibrium, in which the layers possess zero

layer dilatation and the molecules lie at a constant

angle relative to the smectic C layers. We can define a

zero dilatation condition upon setting equation (9 c) to

zero:

n:+Weð Þ{qA½ �~0: ð10Þ
We will now use this condition to obtain an angular

relation between layer tilt angle d, the equilibrium cone

angle hB and the degree of out-of-plane director tilt ac
in terms of phenomenological parameters. We sub-

stitute for n, W and zero dilatation, equations (7), (8)

and (10), and inserting the approximation d<2du/dx

enables equation (10) in the limit of small angles to be

written:

d2{h2{2e
� �

~0: ð11Þ
Notice that we have identified the layer strain e~
12qs/qA. d and h are related to each other through a

layer thickness mismatch. There are three scenarios

relating d and h in terms of the layer strain e. With e~0

(dA~dS) then the smectic cone angle is equal to the

layer tilt, h~d. With ew0 (dAvdS) the smectic cone

angle is less the layer tilt, hvd. The third possibility is

when ev0 (dAwdS) the smectic cone angle is greater

than the layer tilt, hwd. This is the case found

experimentally.

Interestingly, it is this case that must be satisfied to

produce out-of-plane director tilt at the chevron

interface. The degree of this tilt comes from a complex

interaction of all the smectic C thermodynamics

forces. However, by looking at the relative sizes of

the smectic C thermodynamic forces (K/B)1/2%1 [19]

and cEq
2
A&D\q4

A [20] we will be able to exploit the

dominance of the layer dilatation energy to simplify

the calculations. With dilatational energy minimized

absolutely in the chevron, then out-of-plane director

tilt a can be calculated explicitly for a symmetric

chevron to be

ac&+ {2eð Þ
1
2: ð12Þ

Thus negative strain is necessary to produce symmetry

breaking at the chevron tip. We speculate that this

negative layer strain occurs as a result of molecular

pretilt at cell surfaces. There is strong supporting

experimental evidence to confirm that this out-of-plane

tilt, as, is very close to the surface pretilt [21]. Notice

also that writing equation (11) in terms of ac yields the
relationship found by Rieker et al. [4], equation (3).

The smectic C cone angle hB can be identified in terms

of the phenomenological parameters by substituting
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equation (10) into (9 a), yielding the free energy for

uniformly tilted layers, taking W~qAz and n~

(sin hB, cos hB) and minimizing with respect to hB to

yield [14]

hB& tan{1 hB~
c\j j

2Dq2
Ag

2
B

� �1=2

: ð13Þ

We find it helpful at this point to use these

preliminaries to re-write the equations in a more

physically intuitive way. This is done by first obtaining

an expression for the free energy of planar or uniformly

tilted layers. Substituting for equation (10) into (9 a)

yields

Ftilt~

ð
{c\g

2 +Weð Þ2{q2
A

h i

zD\g
2 +Wð Þ2e{q2

A

h i2
d3r:

ð14Þ

It is useful to define the free energy relative to that

of the equilibrium tilted layers Ftilt. This allows the

free energy to be written in a physically more intuitive

way:

DF~F{F tilt~

ð
V

fnzfdilzfconezfgrad d
3r

where

fn~
1

2
K +:nð Þ2z+|nÞ2

i
ð15 bÞ

h

fdil~
1

2
cEg

2
Bq2

A

1

q2
A

n:+Wð Þ{qA

� 	2
ð15 cÞ

fcone~
1

2
D\g

2
Bq4

A

1

q2
A

+Wð Þ2{ n:+Wð Þ2
n o

{ tan2 hB

� 	2
ð15 dÞ

fgrad~
1

2
D\ +2

\W
� �2

: ð15 eÞ

We have identified the smectic C cone angle hB using

equations (13) and (10). The physical meaning of these

quantities is as follows: fn represents the usual Frank

director distortions of a nematic LC; fdil is the cost for

dilating the layers away from their equilibrium thick-

ness qA; fcone maintains the equilibrium cone angle hB
with respect to layer rotations; fgrad records the free

energy cost of layer curvature and is in addition

required for maintaining layer continuity at the chevron

interface.

3.2. Chevron layer profile

If we consider the smectic dilatation energy to be

dominant and enforce zero layer dilatation, then the

layer profile may be derived analytically. Zero dilata-

tion, obtained by substituting equation (10) into (15),

decouples n and W, allowing the free energy to be

written as

DF~

ð
V

D\g
2
Bq4

A

1

q2
A

+Wð Þ2{q2
A

n o
{ tan2 hB

� 	2

z
1

2
D\ +2

\W
� �2

: ð16Þ

This system is invariant with respect to translation in

the y-direction, in the cell plane, perpendicular to the

layer normals. We can therefore substitute for the layer

phase W~q[z2u(x)], where u(x) describes the layer

profile. Rewriting the free energy in terms of angular

variables d<du(x)/dx yields

DF~

ð
1

2
D\g

2
Bq4

A d xð Þ2{ 2ezh2B
� �h i2

z
1

2
D\g

2
Bq2

A

dd xð Þ
dx

� 	2
:

ð17Þ

The layer profile is obtained by solving the correspond-

ing Euler–Lagrange equation:

d xð Þ~dB tanh lcxð Þ ð18Þ
where d2B~2ezh2B and the chevron width is given by

lc~dBqA. It is interesting to observe that d2E~2ezh2B is

an angular geometric condition in the presence of

constant layer width. It can be expressed in terms of

out-of-plane director tilt at the tip centre by

d2B&h2B{a2c : ð19Þ
This confirms that out-of-plane director tilt is indeed

associated with a reduction in layer tilt. Again, this is

the result observed by Rieker et al., equation (3).

3.3. Quasi-static switching energy

We now calculate the surface switching energy in

terms of the macroscopic chevron boundary angle ws.

In principle, this requires one to consider the dynamic

coupling between the rotation of the director and

movement of the smectic layers during the switching

process. Fortunately, we can neglect inertial switching

and consider the process as quasi-static. We can further

assume the layers to remain fixed during the switching

process due to the relatively slow response of layer

motion, occurring in the order of seconds [22], in

comparison with the much faster director dynamics

occurring on a time scale of the order 1026 s [19].

The chevron interface will be considered in the

following way. Away from the tip the far field

mesoscopic boundary condition will be taken to be

the discontinuous limit of the macroscopic continuum

theory, as defined by equation (2). In this region we

must have zero layer dilatation and so equation (10) can
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be written as

q~
qA

dBne
xzne

z

ð20Þ

where ne
x and ne

z are determined by nx~0, dB and hB.
Thus they also determine the angular variable ws~wc at
the chevron interface.

When we switch from one state to the other we will

perturb the system away from this equilibrium state as

we have fixed the layer structure. Thus moving the

director away from its equilibrium is associated with

energy costs from nematic curvature equation (15 b),

layer dilatation (15 c) and cone angle maintenance costs

(15 d). The greatest contributions to the free energy

come from nematic curvature and smectic compression.

If the cone angle variation costs are neglected, the free

energy in equation (15 a) can be written as

F~

ð
1

2
K

Lnx

Lx

� �2

z
Lny

Lx

� �2

z
Lnz

Lx

� �2
" #

zcEg
2q2

0

d xð Þnxznz

dBne
xzne

z

{1

� 	2
dx

ð21Þ

where +We has been replaced by its angular equivalent

dB, and q has been substituted by the far field

equilibrium value, equation (20). This formulation is

naturally constrained by |n|~1.
In order to calculate the surface tension we require

the director path across the interface. On a macroscopic

level the path is irrelevant. Only the cone intersection at

the interface is necessary, as shown in figure 5 (b). By

contrast, the mesoscopic regime requires the director

path to be calculated. This is true even when the far

field director orientation obeys the cone matching

condition. The path is expected to follow the layer

position closely (see for example path 1 shown in

figure 5 (b)). To obtain such a path requires the

minimization of the free energy with respect to n and

is non-trivial. However, it will be sufficient to

approximate satisfactorily using a simple approxima-

tion for the director path across the interface. This

choice is path 2, greatly simplifying the calculation,

while still providing a good estimate for the distortion

energy in the interface region.

Path 2 allows only the x-component of the director

to be free. The free energy in this case can now be

written, in the small angle limit, as

F~ ne
x

� �2ð 1
2

K
L�nnx

Lx

� �2

zBch
�dd�nnxz1
� �2

dx ð22Þ

where Bch~g2q2
A dBne

x

� �2
.

In general, solutions to equation (22) can only be

found numerically. However, the problem can be

simplified by using the approximation �nnx~{�dd. This

approximation also requires that ln~ld. The problem

can now be written in standard Ginzburg–Landau

form [23]

F~

ð
1

2
K

L�dd
Lx

� �2

z�BB �dd2{1
� �2

dx: ð23Þ

This has a standard minimizer, and the director profile

nx is given by:

nx~nE
x tanh x=ln,dð Þ ð24Þ

where l~ K



B{
c h

� �1=2
~qAdB.

The corresponding free energy is:

F~
4

3
KBchð Þ1=2dB nE

x

� �2
: ð25Þ

The minimum surface energy state is obtained when

nE
x~0. This is simply the cone matching condition,

which imposes director continuity at the chevron

interface in the macroscopic continuum theory. There

is a wholly analogous, although ad hoc, term in the

theory of Maclennan et al. [7, 8].

The chevron interface energy can now be expressed

in terms of the angular variables of the macroscopic

continuum theory:

w wsð Þ~ 8

3
ffiffiffi
2

p KBchð Þ1=2dB sin2 hB cos2 dB cos ws{ coswcð Þ2 ð26Þ

w wsð Þ~wc cos ws{ cos wcð Þ2 ð27Þ

Figure 5. (a) Macroscopic picture illustrating the conditions
governing director continuity at the chevron interface, as
shown in figure 4. The two circles represent possible
director orientations around the smectic C cone,
consistent with each well-defined layer orientation. In
this picture the chevron interface is thought of as
infinitely thin. (b) Mesoscopic picture showing actual
continuous director changes across the chevron interface.
Path 1 indicates the (unknown) true path, and path 2 is a
good approximation to this path. We use path 2 as an
approximation of the true path. The director is not
constant; it maintains its out-of-(layer)plane component,
but its in-plane component can vary in response to layer
orientation changes.
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where we have identified wc using nE
x~0 as

cos wc~{
tan dB
tan hB

ð28Þ

and wc~
4
3

KBchð Þ1=2dB sin2 hB cos2 dB.
The general form of w(ws) can be seen in figure 6. The

free energy landscape is determined by wc. When wc~0

or p there is only a single well and no bistability. In the

case that wc|0 the free energy landscape takes a

double-well shape, leading to bistability. The switching

process attempts to move ws from one minimum to

another. The energy cost of switching is dependent on

which way ws takes from one minimum to another, as

shown in the case where wc~p/3. A special case exists

when wc~p/2 when rotation in either direction costs the

same energy.

In the small w angle limit the surface energy term

becomes a simple double-well potential

wc~
1

4
wc w2S{w2c

� 2
: ð29Þ

This effective chevron surface anchoring energy can be

calculated using typical ferroelectric material para-

meters [24] to be y56105 Jm22, which is the upper

limit of surface anchoring energies.

In the next section we use this free energy in the

presence of an imposed electric field to gain insight into

likely switching scenarios. In § 5 we combine the free

energy with an equation of motion to examine the

details of the dynamics of the switching process.

4. Hybrid model: equilibrium considerations

In this section we elaborate our hybrid switching

model introduced in § 2.6. This will combine the

macroscopic smectic C continuum theory, § 2.4, equa-

tion (5), and the chevron surface energy calculation, § 3,

equation (26). Rather than solving the full equation to

determine equilibrium solutions, we will calculate an

approximate set to allow us to concentrate on under-

standing the underlying physics of the switching

process.

The free energy of the cell is obtained by combining

the macroscopic distortion free energy, equation (5),

and the surface energy condition (26). In order to

simplify this free energy we apply the single B elastic

approximation (B~B1~B2~B3) with B13~0, to yield

F~

ðL

0

1

2
Bw2x{P\E\ sin w

� 	
dx

zwc cos ws{ cos wcð Þ2:
ð30Þ

The quantities P\~P sin hB and E\~E cos dE are the

projected components of P and E, and do not take their

bare values as a result of layer tilt. The electric field

term should determine the bulk orientation. In the

absence of external constraints the equilibrium orienta-

tion of the director orients to wE~¡p/2, depending on

the sign of E. However, the presence of the cell and

chevron interfaces provides couples orienting the

directors at w(0)~w0 and w(L)~wc. Finally, the gradient
term prevents w changing discontinuously between the

two boundaries.

There are three length scales involved in this

macroscopic system. These are: (i) the electric penetra-

tion depth je, (ii) the surface chevron surface extra-

polation length ls, and (iii) the ferroelectric cell

thickness divided by 2. These are defined respectively

as:

je~
B

P\E\j j

� �1=2

, ls~
B

wc
, L: ð31Þ

From these we can construct two independent dimen-

sionless ratios, and the most convenient for our

purpose will be: (a) the non-dimensional field strength

ÊE~L2


j2e ; (b) the dimensionless cell size ,~L/ls.

The Euler–Lagrange equations corresponding to

equation (30) possess closed form solutions in terms

of elliptic integrals [7]. However, we shall not make

explicit use of these solutions, but rather we identify the

point of absolute instability of the solution branch

corresponding to a particular global orientation, where

the instability is induced by the presence of the opposing

electric field. For analytical tractability we concentrate

on the physics close to the onset of switching where

we expect E to be close to the switching threshold field

Eth and w(x)%wE. In this regime it is reasonable to

expand the free energy in w, yielding:

F~

ðL

0

dx
1

2
Bw2x{P\E\w

� 	
z

1

4
wc w2s{w2c

� 2
: ð32Þ

We note here that whereas only the first power of w

in the bulk term has been retained, in the surface term

Figure 6. General chevron anchoring energy.
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the expansion is to fourth order. The bulk linear term

in w is not bounded. However the surface terms mean

that the full functional is bounded, and the approxima-

tion is only valid when the small w solution holds.

Although this level of approximation is clearly

inaccurate away from field and length critical points,

it does yield useful information close to these points,

providing a simple insight into the switching process.

4.1. Azimuthal angular profile across the cell

It is now useful to write the free energy, equa-

tion (32), in non-dimensional form as:

�FF~

ð1
0

1

2
w2r{ÊEw

� 	
drz

‘

4
w2s{w2c

� 2
ð33Þ

with non-dimensional free energy �FF~F L
B
.

The corresponding Euler–Lagrange equation is:

wrr~{ÊE ð34Þ
subject to the boundary condition w(0)~0 (for

convenience) and the variational chevron surface

condition:

wr sj z‘ws w2s{w2c

� 
~0: ð35Þ

Equation (34) can be solved by integrating twice and

applying the boundary conditions w(0)~0 and w(1)~ws.

This yields:

w rð Þ~{
1

2
ÊE r2{r
� �

zwsr: ð36Þ

To determine the equilibrium value of ws requires the

simultaneous solution of equations (34) and (35).

However, as we see below, it is more useful to calculate

the free energy as a function of ws, and minimize this

quantity.

4.2. Equilibrium phase diagram and cone matching

The stability regimes can be obtained from the

solutions (34) and (35). We substitute equation (36) into

(33); we then integrate (33) explicitly. This yields a free

energy as a function of the chevron angle wS:

�FF~
1

2
w2s{

1

2
ÊEws{

1

24
ÊE2z

1

4
‘ w2s{w2c

� 2
ð37Þ

�FF~{
1

2
ÊEwsz

1

2
1{‘w2c

� 
w2sz

‘

4
w4sz . . . : ð38Þ

where the dots indicate terms independent of ws.
Equation (38) is of the same form as the Landau

theory of an Ising model with field variable wS, in a field

Ê, identifying , with the temperature variable, and with

‘w2cv1 as the high temperature regime. The qualitative

form of the solutions is thus given by considering the

Ising model.

The solution structure is as follows.

(a) For ‘w2cv1, i.e. extremely thin cells, F̄ has a

single minimizer. For Ê~0, this occurs at ws~0,

and at small Ê,

ws&
1

1{‘w2c

 !
ÊE

2
:

This corresponds to thresholdless switching of

the cell. There is no hysteresis as a function of

field, and the polarization will begin to switch

toward the favoured direction even at infinitely

low fields.

(b) At ‘w2c~1, there is a symmetry breaking

transition and a critical point. Here, in the

same limit

wS~
1

2
ÊE‘{1

� 	1=3
:

(c) For ‘w2c > 1, at zero Ê, there are two energetically

degenerate solutions ws ‘ð Þ~+ w2c{‘{1
� 1=2

, cor-

responding to ‘up’ and ‘down’ states. The system

is now bistable. As the cell becomes thicker, w

approaches the cone angle value wc at which there

is director continuity at the chevron interface.

At finite values of Ê, these solutions lose their

degeneracy, with one solution becoming meta-

stable. For a sufficiently large value of Ê, at the

spinodal line, the metastable solution loses its local

stability. This is the switching threshold line.

The spinodal condition is that both LF
Lws

~0 and
L2F

Lw2s
~0. After some algebra, this yields for the thres-

hold field:

ÊE~
4

3
ffiffiffi
3

p ‘{1=2 ‘w2c{1
� 3=2

: ð39Þ

The resulting phase diagram is summarized in figure 7.

5. Switching dynamics

5.1. Equations of motion

In this section the dynamical equations that describe

switching in the bulk and at the chevron surface are

presented. As shown in the previous section it has been

possible to write the macroscopic bulk free energy in

terms of w(x) and the mesoscopic chevron surface

energy in terms of a single variable wS (equation (30)).

In general form this is simply written as

F~

ðL

0

f x, w xð Þ, w0 xð Þ
� �

dxzwc wsð Þ ð40Þ

where f~fBzfE is the free energy density containing a

bulk elastic and electric term and w(ws) is the surface
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chevron anchoring energy, where ws is the value of w on

the chevron surface.

We model the dynamics using coupled bulk and

surface time-dependent Ginzburg–Landau equations:

gB
Lw
Lt

~{
dF

dw
~{

Lf

Lw
{

L
Lx

Lf

Lwx

� 	
, Bulk ð41 aÞ

gs
Lws
Lt

~{
dF

dw

����
S

~{
Lf

Lwx

����
s

z
Lw

Lws

� 	
, Chevron surface, ð41 bÞ

where gB is the normal bulk relaxation of the chosen order

parameter or just the relevant rotational Leslie viscosity

coefficient; and gs is a chevron surface viscosity. An exact

evaluation of gs is difficult. However, an estimate based on

the chevron geometry should provide sensible physical

bounds on its magnitude. This estimate yields gs<lcgB
where lc is a measure of the chevron tip width.

The dynamics can again be understood by simply

substituting the approximate free energy equation (32)

into (41 a) and (41 b), to yield

t1
Lw
Lt

~{ {ÊE cos w{wrr
� �

ð42 aÞ

t2
Lws
Lt

~{ ws,r{2‘ cos ws{ cos wc sin ws
� �

ð42 bÞ

where we have used the scalings of the last section,

defined in equation (31). For convenience, the time

scales for the relaxation of the bulk t1 and the surface

t2 are identified as:

t1~
gBL2

B1
, t2~

gsL

B1
: ð43Þ

These are the most convenient time scales for numerical

calculation purposes. They refer to the relaxation of

the bulk in the absence of an electric field and the

relaxation of the surface condition due to bulk

distortions, respectively. However, they are not the

true time scales for the field-induced switching process

as determined by ferroelectric device parameters.{ In

the presence of a field and the bistable switching

condition, the appropriate time scales for bulk and

surface relaxation are determined by equating terms in

equation (42 a) to be

tB~
gB

P\E\
, tS~

gs
wc

: ð44Þ

For the device to switch to saturation one requires

je%L and ls%L. The second condition asserts that the

chevron surface torques are balanced in a region ls
close to the chevron tip. These conditions are both

satisfied for standard ferroelectric materials. The ratios

of the natural time scales for the dynamics of the

switching process can now be determined. Rewriting

them in terms of their corresponding length scales, we

obtain

tB
tS

~
gB

P\E\

w

lchgB
~

j2e
lchls

: ð45Þ

Estimates of material parameters [24] set tBy1025 s

and tSy1026 s. Thus the surface relaxes an order of

magnitude faster than the bulk. The limiting time scale

for switching involves bulk reorientation of the smectic

cone rather than relaxation of the chevron interface.

This result can also be obtained using standard

methods of rational mechanics.{
The full set of switching equations have been solved

numerically (using standard methods [24]) in represen-

tative cases. We have calculated the time required for

the surface condition ws to travel from the previously

stable minimum to ws~0. This is the point at which the

field may be removed to allow complete switching to

the other minimum. We define this minimum time as

tmin, referred to as the latching time in the literature.

These results of tmin for varying field strengths can be

seen in figure 8. The numerically calculated switch is

shown for characteristic ferroelectric parameter values,

while varying the electric field strength. We notice that

the switching time tmin follows closely the time scale for

{Using a trial solution for w(r) it is possible to obtain the
free energy in terms of the bulk and surface contributions, i.e.
F[ws]~FB[ws]zFs[ws]. By relating this free energy through a
dissipation function we may write gBzgBð Þ LwsLt

~{
LF ws½ �
Lws

. The
limiting time scale for the relaxation is proportional to gB, as
gB&gs.

Figure 7. Equilibrium phase diagram governing cell switch-
ing properties, as a function of dimensionless parameter
‘w2c and field Ê. We have taken wc~p/4 for diagramma-
tical convenience. Also shown: diagrams of free energy
structure in each region.

{Typical ferroelectric liquid crystal parameters are P~
3006106Cm22, B~106 Jm23, K~10211 Jm21, d~0.2 rad,
h~0.25 rad, Bi~10212N, L~361026m, E~107Vm21,
gB~0.01 kgm21 s21.
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the bulk relaxation tB. For high fields the switching is

limited by the chevron surface relaxation time scale ts.

We should remind the reader that we have not included

the contribution of dielectric anisotropy. If this had

been included in the calculation then tmin would begin

to increase again with field, as discussed, for example,

by Sako et al. [25].

The w(r) profile, taken at the latching point, is shown

in figure 9. This shows characteristically different

profiles for switching close to the switching threshold

(curved), and those obtained for high fields (flattened).

It is also clear that the switch occurs first at the cell

surface and not at the chevron interface. However, this

follows from our choice of anchoring at this boundary

and would be pushed back to the chevron interface

when surface anchoring strengths exceed the chevron

surface interfacial energy.

6. Discussion and conclusions

The understanding of switching in ferroelectric
smectic cells requires the use of unexpectedly complex

theoretical models. This complexity is primarily due to

the contrasting physics required for director switching,

occurring over relatively large spatial scales, and the

physics of the chevron structures often found within

FLC devices, which involves very short range processes.

Macroscopic continuum theory is the ideal tool for

describing the switching process in the chevron arms, in

which the director and the layer tilt vary slowly.

However, this type of theory is by its very nature

unable to describe the chevron interface region. By

contrast, mesoscopic phenomenological theories are

ideal for describing the interface region, but come

at the price of working unrealistically hard in the
slowly varying chevron arms. Previous workers have

developed hybrid theories which combine macroscopic

models with an ad hoc term to describe the chevron

interface region.

In this paper we have replaced this ad hoc chevron

term with one calculated explicitly using the phenom-

enological Landau–de Gennes smectic C chevron

theory. We find that this naturally leads to the

macroscopically defined chevron cone matching condi-

tion. When we include it in a macroscopic hybrid

theory, we are now able to produce a detailed switching

phase diagram close to switching thresholds. The

theory now demonstrates physically the conditions
required for thresholdless and bistable switching

phenomena. In the dynamical case we have shown

that the chevron surface relaxes quickly on the time

scale required for bulk reorientation and that it is the

bulk which restricts ferroelectric switching. This is

consistent with experiment. Finally, a numerical solu-

tion of the switching process of the full equations is

presented to confirm our analytical predictions.

The model presented in this paper does not yet

develop a self-consistent treatment of the electric field

and the contribution from dielectric components to the

free energy. A full theory must include these effects.

However, these extensions do not involve issues of

principle. We are confident that the inclusion of these
features will not affect the general structure of the

switching phase diagram. Rather, it will be found that

the switching threshold values and time scales will be

rescaled.

Furthermore, the present treatment has considered

only uniform switching in the cell, omitting the possible

heterogeneous spatial nature of the switching process

Figure 8. tmin–V switching curve.

Figure 9. w(r) at the latching point.
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involving domain formation. In principle, our metho-

dology can be extended to include these features,

although by necessity the resulting calculation will be

considerably more complex.
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